文章详情
典型参数的检测技术
日期:2025-05-31 10:19
浏览次数:1202
摘要:
**裕度和验收极限
当采用普通测量器具测量孔、轴尺寸时,由于测量误差的存在,被测尺寸的真值可能大于或小于其测量结果。因此,如果只根据测量结果是否超出图样给定的极限尺寸来判断其合格性,有可能会造成误收或误废。而在验收产品时,我们所采用的验收方法应只接收位于规定的尺寸极限之内的工件,位于规定的尺寸极限之外的工件应拒收。为此需要根据被测件的精度高低和相应的极限尺寸,确定其**裕度(A)和验收极限。
**裕度A是测量中总不确定度的允许值(u),主要由测量器具的不确定度允许值u1及测量测量条件引起的测量不确定度允许值u2这两部分组成。**裕度A值按被检验工件的公差大小来确定,一般为工件公差的1/10。国家标准(GB/T3177-1997)对A值有明确的规定。
验收极限是检验工件尺寸时判断其合格与否的尺寸界限。确定验收极限的方式有内缩方式和不内缩方式。选择验收方式时应综合考虑被测尺寸的功能要求、重要程度、公差等级、测量不确定度和工艺能力等。当采用内缩方式时:
孔尺寸的验收极限:上验收极限=*小实体尺寸(DL)-**裕度(A)
轴尺寸的验收极限:下验收极限=**实体尺寸(DM)+**裕度(A)
上验收极限=**实体尺寸(dM)-**裕度(A)
下验收极限=*小实体尺寸(dL)+**裕度(A)
测量器具的选择
测量器具的选择应综合考虑以下几方面的因素:
⑴测量精度:所选的测量器具的精度指标必须满足被测对象的精度要求,才能保证测量的准确度。被测对象的精度要求主要由其公差的大小来体现。公差值越大,对测量的精度 要求就越低;公差越小,对测量的精度要求就越高。一般情况下,所选测量器具的测量不确定度只能占被测零件尺寸公差的1/10~1/3,精度低时取1/10,精度高时取1/3。
⑵测量成本:在保证测量准确度的前提下,应考虑测量器具的价格、使用寿命、检定修理时间、对操作人员技术熟练程度的要求等,选用价格较低、操作方便、维护保养容易、操作培训费用少的测量器具,尽量降低测量成本。
⑶被测件的结构特点及检测数量:所选测量器具的测量范围必须大于被测尺寸。对硬度低、材质软、刚性差的零件,一般选取用非接触测量,如用光学投影放大、气动、光电等原理的测量器具进行测量。当测量件数较多(大批量)时,应选用专用测量器具或自动检验装置;对于单件或少量的测量,可选用万能测量器具。
圆柱轴径的测量
1、用专用量具和通用量具测量
对于生产批量较大的工件可选用光滑极限量规中的环规、卡规进行检验,判定其是否在合格范围内。此方法工作效率较高,对使用环境无特殊要求,在生产现场中应用广泛。
对于中、低精度的工件,常使用游标卡尺、外径千分尺、杠杆千分尺等通用量具进行测量。
2、用立式光学比较仪测量
在立式光学比较仪上测量圆柱轴径属于比较测量,即用量块作为标准尺寸,将仪器调至零位,然后测出被测轴径与量块标准尺寸的差值,求出被测轴径。
3、用立式测长仪测量
在立式测长仪上测量圆柱体轴径,在100mm测量范围内,可进行直接测量,当被测直径大于100mm时,以量块为基准进行比较测量。
4、用万能工具显微镜测量
当在被测圆柱体两端有中心孔时,可在万能工具显微镜上用影像法进行非接触测量。用影像法测量圆柱体轴径,由于调整光圈的误差及对准精度,故测量误差较大,被测圆柱体轴径越大,测量误差也越大。因此,一般很少采用影像法测量圆柱体轴径。
万能工具显微镜上配备有直刃测量刀用于测量圆柱体轴径。直刃测量刀在距刃口0.3mm处有一条平行于刃口的线刻线。测量时,测量刀与被测圆柱体母线接触后,用这条细刻线与和米字线中心线平行的**条平行虚线进行压线对准并读数,被测圆柱体同一截面两侧的读数差即为被测直径。用这种方法测量直径时,必须用3倍物镜,并使用反光照明。
圆柱孔径的测量
1、用专用量具和通用量具测量
对于生产批量较大的工件可选用光滑极限量规中的塞规进行检验,判定其是否在合格范围内。此方法工作效率较高,对使用环境无特殊要求,在生产现场中应用广泛。
对于中、低精度的工件,常使用游标卡尺、内径千分尺、内径百分表等通用量具进行测量。
2、在工具显微镜上测量
用影像法测量时,可先将被测件置于仪器玻璃工作台上,并使被测直径与工作台面平行,然后调焦,使被测孔的轮廓影像清晰后,移动工作台纵、横坐标,使测角目镜中垂直于坐标的米字线与被测孔的轮廓影像两次相切,两次的读数之差即为被测孔的直径。因受孔壁表面粗糙度及孔深等因素的影响,该方法只适于测量精度较低、孔深不大、并且端面经过研磨的工件。
光学灵敏杠杆系工具显微镜上用接触法测量孔径的附件。用灵敏杠杆法测量孔径可以消除用影像法测量时产生的一些误差,所以测量精度相对较高。用光学灵敏杠杆法测量孔径,其误差与测头的测量误差有关,同时还与仪器的示值误差及瞄准误差有关,在下常使用情况下,该方法的极限误差为±2μm。
3、在万能测长仪上测量
在万能测长仪上可用双钩法测量孔径,是孔径测量中*常用的方法之一。仪器配有大小两套测钩,小测钩可测孔径范围为10~100mm,**孔深15mm;大测钩可测孔径范围为50~150mm,**孔深为50mm。测量时,先用一个标准环规(或由量块组成的标准尺寸)调整仪器的初始值,然后换上被测孔进行测量,测也被测孔与标准环规的差值后,计算出被测孔径的实际值。
电眼装置是万能测长仪的一个附件,可对孔径作无测量力的接触测量。测量范围为φ1~φ20mm。测量时,被测孔的轴线要求与端面垂直,工作台在使用前应调水平,测量心甘情愿轴在测量时**不能加测力,操作中注意力应集中,以免产生测量误差及损伤设备。
4、用气动量仪测量
气动量仪是将被测尺寸的变化量转换成空气压力、流量或流速的变化,并通过压力计或流量计进行读数的一种仪器。具有重复性及稳定性较好,可实现非接触测量、动态测量和自动测量,对测量环境要求不高等特点,但由于不同尺寸的孔径需配备相应的气动量仪专用测量塞规和标准环规,因此,一般适用于大批量加工的检测。
角度的测量
角度的测量分比较测量、直接测量和间接测量。
比较测量的实质是将角度量具与被测角度或锥度相比较,用光隙法或涂色法估计出被测角度或锥度的偏差,或判断被检角度或锥度是否在允许的公差范围内。此法的常用角度量个有:角度量块、角度样板、直角尺和圆锥量规等。
直接测量就是直接从角度计量器具上读出被测角度。对于精度不高的角度工件,常用万能角度尺进行测量,它可在0º~320º测量范围内任意角度的示值误差分别不超出±2′和±5′。对于高精度的角度工件,则需用光学分度头或测角仪进行测量。也可能用万能工具显微镜和光学经纬仪测量。
间接测量就是先测量与被测角度有关的长度尺寸,通过三角函数计算出被测角度值。常用的计量器具有正弦尺,滚柱或钢球。
形位误差的检测原则
(1)与理想要素比较原则——将被测实际要素与相应的理想要素作比较,在比较过程中获得数据,根据这些数据来评定形位误差。
如将被测实际直线与模拟理想直线的刀口的刀刃相比较,根据光隙的大小来确定该直线的直线度误差值。
(2)测量坐标值原则——通过测量被测要素上各点的坐标值来评定被测要素的形位误差。如利用直角坐标系测量孔中心的纵横坐标以确定其位置误差值。
(3)测量特征参数原则——通过测量实际被测要至少上的特征参数,评定有关的形痊误差。特征参数是指能近似反映有关形位误差的参数。例如,用两点法测量回转表面的横截面的局部实际尺寸,并以其**差值的一半作为该截面的圆度误差。
(4)测量跳动原则——按照跳动的定义进行检测的原则,主要用于检测圆跳动和全跳动。例如,测量实际被测要素对基准轴线的径向圆跳动。
(5) 控制实效边界原则——检测被测实际要素是否超过实效边界,以判断被测实际要素是否合格。该原则用于采用相关要求的场合,一般用光滑极限量规或功能量规来检验。例如,按紧大实体要求设计的、基本尺寸等于孔的**实效尺寸的垂直度量规,检验孔轴线对端面和垂直误差。
当采用普通测量器具测量孔、轴尺寸时,由于测量误差的存在,被测尺寸的真值可能大于或小于其测量结果。因此,如果只根据测量结果是否超出图样给定的极限尺寸来判断其合格性,有可能会造成误收或误废。而在验收产品时,我们所采用的验收方法应只接收位于规定的尺寸极限之内的工件,位于规定的尺寸极限之外的工件应拒收。为此需要根据被测件的精度高低和相应的极限尺寸,确定其**裕度(A)和验收极限。
**裕度A是测量中总不确定度的允许值(u),主要由测量器具的不确定度允许值u1及测量测量条件引起的测量不确定度允许值u2这两部分组成。**裕度A值按被检验工件的公差大小来确定,一般为工件公差的1/10。国家标准(GB/T3177-1997)对A值有明确的规定。
验收极限是检验工件尺寸时判断其合格与否的尺寸界限。确定验收极限的方式有内缩方式和不内缩方式。选择验收方式时应综合考虑被测尺寸的功能要求、重要程度、公差等级、测量不确定度和工艺能力等。当采用内缩方式时:
孔尺寸的验收极限:上验收极限=*小实体尺寸(DL)-**裕度(A)
轴尺寸的验收极限:下验收极限=**实体尺寸(DM)+**裕度(A)
上验收极限=**实体尺寸(dM)-**裕度(A)
下验收极限=*小实体尺寸(dL)+**裕度(A)
测量器具的选择
测量器具的选择应综合考虑以下几方面的因素:
⑴测量精度:所选的测量器具的精度指标必须满足被测对象的精度要求,才能保证测量的准确度。被测对象的精度要求主要由其公差的大小来体现。公差值越大,对测量的精度 要求就越低;公差越小,对测量的精度要求就越高。一般情况下,所选测量器具的测量不确定度只能占被测零件尺寸公差的1/10~1/3,精度低时取1/10,精度高时取1/3。
⑵测量成本:在保证测量准确度的前提下,应考虑测量器具的价格、使用寿命、检定修理时间、对操作人员技术熟练程度的要求等,选用价格较低、操作方便、维护保养容易、操作培训费用少的测量器具,尽量降低测量成本。
⑶被测件的结构特点及检测数量:所选测量器具的测量范围必须大于被测尺寸。对硬度低、材质软、刚性差的零件,一般选取用非接触测量,如用光学投影放大、气动、光电等原理的测量器具进行测量。当测量件数较多(大批量)时,应选用专用测量器具或自动检验装置;对于单件或少量的测量,可选用万能测量器具。
圆柱轴径的测量
1、用专用量具和通用量具测量
对于生产批量较大的工件可选用光滑极限量规中的环规、卡规进行检验,判定其是否在合格范围内。此方法工作效率较高,对使用环境无特殊要求,在生产现场中应用广泛。
对于中、低精度的工件,常使用游标卡尺、外径千分尺、杠杆千分尺等通用量具进行测量。
2、用立式光学比较仪测量
在立式光学比较仪上测量圆柱轴径属于比较测量,即用量块作为标准尺寸,将仪器调至零位,然后测出被测轴径与量块标准尺寸的差值,求出被测轴径。
3、用立式测长仪测量
在立式测长仪上测量圆柱体轴径,在100mm测量范围内,可进行直接测量,当被测直径大于100mm时,以量块为基准进行比较测量。
4、用万能工具显微镜测量
当在被测圆柱体两端有中心孔时,可在万能工具显微镜上用影像法进行非接触测量。用影像法测量圆柱体轴径,由于调整光圈的误差及对准精度,故测量误差较大,被测圆柱体轴径越大,测量误差也越大。因此,一般很少采用影像法测量圆柱体轴径。
万能工具显微镜上配备有直刃测量刀用于测量圆柱体轴径。直刃测量刀在距刃口0.3mm处有一条平行于刃口的线刻线。测量时,测量刀与被测圆柱体母线接触后,用这条细刻线与和米字线中心线平行的**条平行虚线进行压线对准并读数,被测圆柱体同一截面两侧的读数差即为被测直径。用这种方法测量直径时,必须用3倍物镜,并使用反光照明。
圆柱孔径的测量
1、用专用量具和通用量具测量
对于生产批量较大的工件可选用光滑极限量规中的塞规进行检验,判定其是否在合格范围内。此方法工作效率较高,对使用环境无特殊要求,在生产现场中应用广泛。
对于中、低精度的工件,常使用游标卡尺、内径千分尺、内径百分表等通用量具进行测量。
2、在工具显微镜上测量
用影像法测量时,可先将被测件置于仪器玻璃工作台上,并使被测直径与工作台面平行,然后调焦,使被测孔的轮廓影像清晰后,移动工作台纵、横坐标,使测角目镜中垂直于坐标的米字线与被测孔的轮廓影像两次相切,两次的读数之差即为被测孔的直径。因受孔壁表面粗糙度及孔深等因素的影响,该方法只适于测量精度较低、孔深不大、并且端面经过研磨的工件。
光学灵敏杠杆系工具显微镜上用接触法测量孔径的附件。用灵敏杠杆法测量孔径可以消除用影像法测量时产生的一些误差,所以测量精度相对较高。用光学灵敏杠杆法测量孔径,其误差与测头的测量误差有关,同时还与仪器的示值误差及瞄准误差有关,在下常使用情况下,该方法的极限误差为±2μm。
3、在万能测长仪上测量
在万能测长仪上可用双钩法测量孔径,是孔径测量中*常用的方法之一。仪器配有大小两套测钩,小测钩可测孔径范围为10~100mm,**孔深15mm;大测钩可测孔径范围为50~150mm,**孔深为50mm。测量时,先用一个标准环规(或由量块组成的标准尺寸)调整仪器的初始值,然后换上被测孔进行测量,测也被测孔与标准环规的差值后,计算出被测孔径的实际值。
电眼装置是万能测长仪的一个附件,可对孔径作无测量力的接触测量。测量范围为φ1~φ20mm。测量时,被测孔的轴线要求与端面垂直,工作台在使用前应调水平,测量心甘情愿轴在测量时**不能加测力,操作中注意力应集中,以免产生测量误差及损伤设备。
4、用气动量仪测量
气动量仪是将被测尺寸的变化量转换成空气压力、流量或流速的变化,并通过压力计或流量计进行读数的一种仪器。具有重复性及稳定性较好,可实现非接触测量、动态测量和自动测量,对测量环境要求不高等特点,但由于不同尺寸的孔径需配备相应的气动量仪专用测量塞规和标准环规,因此,一般适用于大批量加工的检测。
角度的测量
角度的测量分比较测量、直接测量和间接测量。
比较测量的实质是将角度量具与被测角度或锥度相比较,用光隙法或涂色法估计出被测角度或锥度的偏差,或判断被检角度或锥度是否在允许的公差范围内。此法的常用角度量个有:角度量块、角度样板、直角尺和圆锥量规等。
直接测量就是直接从角度计量器具上读出被测角度。对于精度不高的角度工件,常用万能角度尺进行测量,它可在0º~320º测量范围内任意角度的示值误差分别不超出±2′和±5′。对于高精度的角度工件,则需用光学分度头或测角仪进行测量。也可能用万能工具显微镜和光学经纬仪测量。
间接测量就是先测量与被测角度有关的长度尺寸,通过三角函数计算出被测角度值。常用的计量器具有正弦尺,滚柱或钢球。
形位误差的检测原则
(1)与理想要素比较原则——将被测实际要素与相应的理想要素作比较,在比较过程中获得数据,根据这些数据来评定形位误差。
如将被测实际直线与模拟理想直线的刀口的刀刃相比较,根据光隙的大小来确定该直线的直线度误差值。
(2)测量坐标值原则——通过测量被测要素上各点的坐标值来评定被测要素的形位误差。如利用直角坐标系测量孔中心的纵横坐标以确定其位置误差值。
(3)测量特征参数原则——通过测量实际被测要至少上的特征参数,评定有关的形痊误差。特征参数是指能近似反映有关形位误差的参数。例如,用两点法测量回转表面的横截面的局部实际尺寸,并以其**差值的一半作为该截面的圆度误差。
(4)测量跳动原则——按照跳动的定义进行检测的原则,主要用于检测圆跳动和全跳动。例如,测量实际被测要素对基准轴线的径向圆跳动。
(5) 控制实效边界原则——检测被测实际要素是否超过实效边界,以判断被测实际要素是否合格。该原则用于采用相关要求的场合,一般用光滑极限量规或功能量规来检验。例如,按紧大实体要求设计的、基本尺寸等于孔的**实效尺寸的垂直度量规,检验孔轴线对端面和垂直误差。